Treffer: Nonlinear resonant periodic problems with concave terms
Title:
Nonlinear resonant periodic problems with concave terms
Source:
Journal of mathematical analysis and applications. 375(1):342-364
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Equations algébriques et transcendantes non linéaires, Nonlinear algebraic and transcendental equations, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse mathématique, Mathematical analysis, Análisis matemático, Groupe critique, Critical group, Grupo crítico, Homotopie, Homotopy, Homotopía, Laplacien p, P laplacian, Laplaciana p, Méthode variationnelle, Variational methods, Perturbation, Perturbación, Point critique, Critical point, Punto crítico, Principe variationnel, Variational principle, Principio variacional, Problème non linéaire, Nonlinear problems, Résonance, Resonance, Resonancia, Théorie Morse, Morse theory, Theoría Morse, Valeur propre, Eigenvalue, Valor propio, 35B34, 35B38, 49Jxx, 49S05, 58E05, 58E30, 65F15, 65H17, 65K10, 65Kxx, Théorie existence, Existence theory, C-condition, Concave term, Contractible space, Critical groups, Ekeland variational principle, Homotopy equivalent, Strong deformation retract
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Ohio University, Athens, OH 45701, United States
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
Department of Mathematics, University ofAveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
Department of Mathematics, University ofAveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
ISSN:
0022-247X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23932052
Database:
PASCAL Archive
Weitere Informationen
We consider a nonlinear periodic problem, driven by the scalar p-Laplacian with a concave term and a Caratheodory perturbation. We assume that this perturbation f(t,x) is (p ― 1)-linear at ±∞, and resonance can occur with respect to an eigenvalue λm+1, m ≥ 2, of the negative periodic scalar p-Laplacian. Using a combination of variational techniques, based on the critical point theory, with Morse theory, we establish the existence of at least three nontrivial solutions. Useful in our considerations is an alternative minimax characterization of λ1 > 0 (the first nonzero eigenvalue) that we prove in this work.