Treffer: Multiple-Access Network Information-Flow and Correction Codes

Title:
Multiple-Access Network Information-Flow and Correction Codes
Source:
Facets of Coding Theory: From Algorithms to Networks. Special Issue Dedicated to the Scientific Legacy of Ralf KoetterIEEE transactions on information theory. 57(2):1067-1079
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Codage, codes, Coding, codes, Télécommunications, Telecommunications, Systèmes, réseaux et services de télécommunications, Systems, networks and services of telecommunications, Transmission et modulation (techniques et équipements), Transmission and modulation (techniques and equipments), Accès multiple, Multiple access, Acceso múltiple, Codage aléatoire, Random coding, Codificación aleatoria, Codage linéaire, Linear coding, Codificación lineal, Code aléatoire, Random codes, Code linéaire, Linear code, Código lineal, Correction erreur, Error correction, Corrección error, Diffusion donnée, Data broadcast, Difusion dato, Diffusion information, Information dissemination, Difusión información, Estimation canal, Channel estimation, Estimación canal, Estimation paramètre, Parameter estimation, Estimación parámetro, Flot réseau, Network flow, Flujo red, Flux information, Information flow, Flujo información, Implémentation, Implementation, Implementación, Multidestinataire, Multicast, Multidestinatario, Méthode sous espace, Subspace method, Método subespacio, Réseau accès, Access network, Red acceso, Double extended field, Gabidulin codes, network error-correction, random linear network coding, subspace codes
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering, Engineering and Applied Science Division, California Institute of Technology, Pasadena, CA 91125, United States
Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong-Kong
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001, United States
ISSN:
0018-9448
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.23938016
Database:
PASCAL Archive

Weitere Informationen

This work considers the multiple-access multicast error-correction scenario over a packetized network with z malicious edge adversaries. The network has min-cut m and packets of length ℓ, and each sink demands all information from the set of sources S. The capacity region is characterized for both a side-channel model (where sources and sinks share some random bits that are secret from the adversary) and an omniscient adversarial model (where no limitations on the adversary's knowledge are assumed). In the side-channel adversarial model, the use of a secret channel allows higher rates to be achieved compared to the omniscient adversarial model, and a polynomial-complexity capacity-achieving code is provided. For the omniscient adversarial model, two capacity-achieving constructions are given: the first is based on random subspace code design and has complexity exponential in ℓm, while the second uses a novel multiple-field-extension technique and has O(ℓm|S|) complexity, which is polynomial in the network size. Our code constructions are end-to-end in that all nodes except the sources and sinks are oblivious to the adversaries and may simply implement predesigned linear network codes (random or otherwise). Also, the sources act independently without knowledge of the data from other sources.