Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Orientation-Matching Minimization for Image Denoising and Inpainting

Title:
Orientation-Matching Minimization for Image Denoising and Inpainting
Source:
International journal of computer vision. 92(3):308-324
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Calcul variationnel, Variational calculus, Cálculo de variaciones, Décomposition opérateur, Operator splitting, Descomposición operador, Equation Euler Lagrange, Euler Lagrange equation, Ecuación Euler Lagrange, Equation dérivée partielle, Partial differential equation, Ecuación derivada parcial, Espace échelle, Scale space, Espacio escala, Image couleur, Color image, Imagen color, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Minimisation fonctionnelle, Functional minimization, Minimización funcional, Modélisation, Modeling, Modelización, Méthode adaptative, Adaptive method, Método adaptativo, Orientation, Orientación, Reconstruction image, Image reconstruction, Reconstrucción imagen, Restauration image, Image restoration, Restauración imagen, Traitement image, Image processing, Procesamiento imagen, Télévision, Television, Televisión, Vision ordinateur, Computer vision, Visión ordenador, Appariement image, Image matching, reconocimiento de patrones en imágenes, Image inpainting, Orientation-matching minimization ·, TV-Stokes equation, · Image denoising
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
Mathematics Institute, University of Bergen, Bergen, Norway
Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
ISSN:
0920-5691
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.23955835
Database:
PASCAL Archive

Weitere Informationen

In this paper, we propose an orientation-matching functional minimization for image denoising and image inpainting. Following the two-step TV-Stokes algorithm (Rahman et al. in Scale space and variational methods in computer vision, pp. 473―482, Springer, Heidelberg, 2007; Tai et al. in Image processing based on partial differential equations, pp. 3―22, Springer, Heidelberg, 2006; Bertalmio et al. in Proc. conf. comp. vision pattern rec., pp. 355―362, 2001), a regularized tangential vector field with zero divergence condition is first obtained. Then a novel approach to reconstruct the image is proposed. Instead of finding an image that fits the regularized normal direction from the first step, we propose to minimize an orientation matching cost measuring the alignment between the image gradient and the regularized normal direction. This functional yields a new nonlinear partial differential equation (PDE) for reconstructing denoised and inpainted images. The equation has an adaptive diffusivity depending on the orientation of the regularized normal vector field, providing reconstructed images which have sharp edges and smooth regions. The additive operator splitting (AOS) scheme is used for discretizing Euler-Lagrange equations. We present the results of various numerical experiments that illustrate the improvements obtained with the new functional.