Result: LONG-TERM STABILITY ESTIMATES AND EXISTENCE OF A GLOBAL ATTRACTOR IN A FINITE ELEMENT APPROXIMATION OF THE NAVIER-STOKES EQUATIONS WITH NUMERICAL SUBGRID SCALE MODELING

Title:
LONG-TERM STABILITY ESTIMATES AND EXISTENCE OF A GLOBAL ATTRACTOR IN A FINITE ELEMENT APPROXIMATION OF THE NAVIER-STOKES EQUATIONS WITH NUMERICAL SUBGRID SCALE MODELING
Source:
SIAM journal on numerical analysis. 48(3):1013-1037
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2011.
Publication Year:
2011
Physical Description:
print, 56 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Théorie des opérateurs, Operator theory, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Algorithme, Algorithm, Algoritmo, Analyse numérique, Numerical analysis, Análisis numérico, Approximation, Aproximación, Attracteur global, Global attractor, Atractor global, Calcul variationnel, Variational calculus, Cálculo de variaciones, Ensemble compact, Compact set, Conjunto compacto, Equation Navier Stokes, Navier Stokes equation, Ecuación Navier Stokes, Modèle dynamique, Dynamic model, Modelo dinámico, Modèle simulation, Simulation model, Modelo simulación, Méthode Galerkin, Galerkin method, Método Galerkin, Méthode optimisation, Optimization method, Método optimización, Méthode échelle multiple, Multiscale method, Método escala múltiple, Méthode élément fini, Finite element method, Método elemento finito, Nombre Reynolds, Reynolds number, Número Reynolds, Problème Stokes, Stokes problem, Problema Stokes, Programmation mathématique, Mathematical programming, Programación matemática, Stabilité numérique, Numerical stability, Estabilidad numérica, Temps calcul, Computation time, Tiempo computación, Turbulence, Turbulencia, 35Q30, 47A10, 49M15, 49R50, 51A50, 65K10, 65Kxx, Ensemble absorbant, Absorbing set, Espace orthogonal, Orthogonal space, 65N30, Navier-Stokes problem, absorbing set, global attractor, long-term stability, stabilized finite element methods, subgrid scales
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
International Center for Numerical Methods in Engineering (CIMNE), Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain
Departamento de Matematica Aplicada I, Universidad de Sevilla, ETSI Informática, Avda. Reina Mercedes, s/n, 41012 Sevilla, Spain
ISSN:
0036-1429
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23961372
Database:
PASCAL Archive

Further Information

Variational multiscale methods lead to stable finite element approximations of the Navier-Stokes equations, dealing with both the indefinite nature of the system (pressure stability) and the velocity stability loss for high Reynolds numbers. These methods enrich the Galerkin formulation with a subgrid component that is modeled. In fact, the effect of the subgrid scale on the captured scales has been proved to dissipate the proper amount of energy needed to approximate the correct energy spectrum. Thus, they also act as effective large-eddy simulation turbulence models and allow one to compute flows without the need to capture all the scales in the system. In this article, we consider a dynamic subgrid model that enforces the subgrid component to be orthogonal to the finite element space in the L2 sense. We analyze the long-term behavior of the algorithm, proving the existence of appropriate absorbing sets and a compact global attractor. The improvements with respect to a finite element Galerkin approximation are the long-term estimates for the subgrid component, which are translated to effective pressure and velocity stability. Thus, the stabilization introduced by the subgrid model into the finite element problem does not deteriorate for infinite time intervals of computation.