Result: Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model

Title:
Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model
Source:
Communications in mathematical physics. 303(2):509-554
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 48 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Mathematics, University of Munich, Theresienstr. 39, 80333 Munich, Germany
Department of Mathematics, Harvard University, Cambridge, MA 02138, United States
ISSN:
0010-3616
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.24069804
Database:
PASCAL Archive

Further Information

We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements Hxy, indexed by x, y E A C ℤd, are independent, uniformly distributed random variables if |x-y| is less than the band width W, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales t ≪ Wd/3. We also show that the localization length of the eigenvectors of H is larger than a factor Wd/6 times the band width. All results are uniform in the size |Λ| of the matrix.