Result: SPATIAL MODELS GENERATED BY NESTED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, WITH AN APPLICATION TO GLOBAL OZONE MAPPING

Title:
SPATIAL MODELS GENERATED BY NESTED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, WITH AN APPLICATION TO GLOBAL OZONE MAPPING
Source:
The Annals of applied statistics. 5(1):523-550
Publisher Information:
Cleveland, OH: Institute of Mathematical Statistics, 2011.
Publication Year:
2011
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Analyse stochastique, Stochastic analysis, Statistiques, Statistics, Généralités, General topics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Champ gaussien, Gaussian field, Campo gaussiano, Chaîne Markov, Markov chain, Cadena Markov, Covariance, Covariancia, Distribution statistique, Statistical distribution, Distribución estadística, Modèle emboîté, Nested model, Modelo encajado, Modèle stochastique, Stochastic model, Modelo estocástico, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Méthode optimisation, Optimization method, Método optimización, Méthode statistique, Statistical method, Método estadístico, Méthode stochastique, Stochastic method, Método estocástico, Optimisation, Optimization, Optimización, Programmation mathématique, Mathematical programming, Programación matemática, Théorie approximation, Approximation theory, Variation journalière, Daily variation, Variación diaria, Variété mathématique, Manifold, Variedad matemática, 49XX, 60H15, 60J10, 62E17, 65C05, 65C40, 65K10, 65Kxx, Fonction covariance, Covariance function
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Lund University, United States
ISSN:
1932-6157
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24071030
Database:
PASCAL Archive

Further Information

A new class of stochastic field models is constructed using nested stochastic partial differential equations (SPDEs). The model class is computationally efficient, applicable to data on general smooth manifolds, and includes both the Gaussian Matérn fields and a wide family of fields with oscillating covariance functions. Nonstationary covariance models are obtained by spatially varying the parameters in the SPDEs, and the model parameters are estimated using direct numerical optimization, which is more efficient than standard Markov Chain Monte Carlo procedures. The model class is used to estimate daily ozone maps using a large data set of spatially irregular global total column ozone data.