Treffer: Towards a geometry of recursion

Title:
Towards a geometry of recursion
Source:
Theoretical computer science. 412(20):2015-2028
Publisher Information:
Oxford: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 32 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Analyse fonctionnelle, Functional analysis, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Divers, Miscellaneous, Algorithme, Algorithm, Algoritmo, Algorithmique, Algorithmics, Algorítmica, Calcul automatique, Computing, Cálculo automático, Espace Hilbert, Hilbert space, Espacio Hilbert, Espace linéaire, Linear space, Espacio lineal, Géométrie, Geometry, Geometría, Informatique théorique, Computer theory, Informática teórica, Interblocage, Deadlock, Interbloqueo, Monoïde, Monoid, Monoide, Morphisme, Morphism, Morfismo, Méthode décomposition, Decomposition method, Método descomposición, Point fixe, Fix point, Punto fijo, Programmation, Programming, Programación, Théorie algorithme, Algorithm theory, Trace, Traza, Virgule fixe, Fixed point, Coma fija, 37C25, 46Axx, 46Cxx, 68Wxx, Catégorie, Category, Récursion, Terme, Théorie mathématique, Théorie trace, Fixed point operators, Geometry of interaction, Recursion, Traced categories, Unique decomposition categories
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Informatics and Computing, Indiana University Bloomington, IN 47408, United States
ISSN:
0304-3975
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.24081663
Database:
PASCAL Archive

Weitere Informationen

Any mathematical theory of algorithms striving to offer a foundation for programming needs to provide a rigorous definition for an abstract algorithm. The works reported by Girard (1988) in [10] and by Moschovakis (1989, 1995) in [29-31] are among the best examples of such attempts. They both try to offer a mathematically precise and rigorous formulation of an abstract algorithm, intend to keep the algorithmic flavour present and take the notion of recursion as primary and central. The present work is motivated by Girard's Gol 2 paper (Girard (1988) [10], which offers a treatment of recursion in terms of fixed points of linear functions. It is situated in the context of the geometry of interaction (Gol) program and is carried out in the concrete setting of the space of bounded linear maps on a Hilbert space. In this paper, we extend the work in Girard (1988) [10] to the context of traced unique decomposition categories, once again emphasizing the role of abstract trace in the theory of computing. We show that traced unique decomposition categories enriched over partially additive monoids or their variations suffice to axiomatize and hence extend the work in Girard's Gol 2 paper. The theory developed here allows us to formulate an abstract notion of an algorithm as a pair of morphisms in a traced unique decomposition category, an abstract notion of computation as the execution formula (defined using the trace operator) applied to an algorithm, and finally a notion of deadlock-freeness for algorithms. In addition, we can treat recursive definitions, fixed points and fixed point operators in a uniform way in terms of traced unique decomposition categories.