Treffer: Location-aided routing with uncertainty in mobile ad hoc networks: A stochastic semidefinite programming approach

Title:
Location-aided routing with uncertainty in mobile ad hoc networks: A stochastic semidefinite programming approach
Source:
Recent Advances in Simulation and Mathematical Modeling of Wireless NetworksMathematical and computer modelling. 53(11-12):2192-2203
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Algorithme déterministe, Deterministic algorithms, Analyse assistée, Computer aided analysis, Análisis asistido, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Modèle mathématique, Mathematical model, Modelo matemático, Méthode optimisation, Optimization method, Método optimización, Problème localisation, Location problem, Problema localización, Programmation mathématique, Mathematical programming, Programación matemática, Programmation stochastique, Stochastic programming, Programación estocástica, Routage, Routing, Enrutamiento, Variable aléatoire, Random variable, Variable aléatoria, 49XX, 65K10, 65Kxx, Mobile ad hoc networks
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Division of Mathematical and Natural Sciences, Arizona State University, Mail Code: 2352, P.O. Box 37100, Phoenix, AZ 85069-7100, United States
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-7206, United States
ISSN:
0895-7177
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24142963
Database:
PASCAL Archive

Weitere Informationen

We study location-aided routing under mobility in wireless ad hoc networks. Due to node mobility, the network topology changes continuously, and clearly there exists an intricate tradeoff between the message passing overhead and the latency in the route discovery process. Aiming to obtain a clear understanding of this tradeoff, we use stochastic semidefinite programming (SSDP), a newly developed optimization model, to deal with the location uncertainty associated with node mobility. In particular, we model both the speed and the direction of node movement by random variables and construct random ellipses accordingly to better capture the location uncertainty and the heterogeneity across different nodes. Based on SSDP, we propose a stochastic location-aided routing (SLAR) strategy to optimize the tradeoff between the message passing overhead and the latency. Our results reveal that in general SLAR can significantly reduce the overall overhead than existing deterministic algorithms, simply because the location uncertainty in the routing problem is better captured by the SSDP model.