Treffer: Location-aided routing with uncertainty in mobile ad hoc networks: A stochastic semidefinite programming approach
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-7206, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We study location-aided routing under mobility in wireless ad hoc networks. Due to node mobility, the network topology changes continuously, and clearly there exists an intricate tradeoff between the message passing overhead and the latency in the route discovery process. Aiming to obtain a clear understanding of this tradeoff, we use stochastic semidefinite programming (SSDP), a newly developed optimization model, to deal with the location uncertainty associated with node mobility. In particular, we model both the speed and the direction of node movement by random variables and construct random ellipses accordingly to better capture the location uncertainty and the heterogeneity across different nodes. Based on SSDP, we propose a stochastic location-aided routing (SLAR) strategy to optimize the tradeoff between the message passing overhead and the latency. Our results reveal that in general SLAR can significantly reduce the overall overhead than existing deterministic algorithms, simply because the location uncertainty in the routing problem is better captured by the SSDP model.