Result: TOEPLITZ OPERATORS WITH BMO SYMBOLS ON THE SEGAL-BARGMANN SPACE

Title:
TOEPLITZ OPERATORS WITH BMO SYMBOLS ON THE SEGAL-BARGMANN SPACE
Source:
Transactions of the American Mathematical Society. 363(6):3015-3030
Publisher Information:
Providence, RI: American Mathematical Society, 2011.
Publication Year:
2011
Physical Description:
print, 1 p
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
DEPARTMENT OF MATHEMATICS, SUNY AT BUFFALO, BUFFALO, NEW YORK 14260, United States
ISSN:
0002-9947
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24147240
Database:
PASCAL Archive

Further Information

We show that Zorboska's criterion for compactness of Toeplitz operators with BMO1 symbols on the Bergman space of the unit disc holds, by a different proof, for the Segal-Bargmann space of Gaussian square-integrable entire functions on ℂn. We establish some basic properties of BMOTp for p > 1 and complete the characterization of bounded and compact Toeplitz operators with BMO1 symbols. Via the Bargmann isometry and results of Lo and Englis, we also give a compactness criterion for the Gabor-Daubechies windowed Fourier localization operators on L2 (ℝn, dv) when the symbol is in a BMO1 Sobolev-type space. Finally, we discuss examples of the compactness criterion and counterexamples to the unrestricted application of this criterion for the compactness of Toeplitz operators.