Result: PRINCIPAL CURVATURES OF FIBERS AND HEEGAARD SURFACES

Title:
PRINCIPAL CURVATURES OF FIBERS AND HEEGAARD SURFACES
Authors:
Source:
Pacific journal of mathematics. 250(1):61-66
Publisher Information:
Berkeley, CA: University of California, Department of Mathematics, 2011.
Publication Year:
2011
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS 530 CHURCH STREET, ANN ARBOR, MI 48109-1043, United States
ISSN:
0030-8730
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24147281
Database:
PASCAL Archive

Further Information

We study principal curvatures of fibers and Heegaard surfaces smoothly embedded in hyperbolic 3-manifolds. It is well known that a fiber or a Heegaard surface in a hyperbolic 3-manifold cannot have principal curvatures everywhere less than one in absolute value. We show that given an upper bound on the genus of a minimally embedded fiber or Heegaard surface and a lower bound on the injectivity radius of the hyperbolic 3-manifold, there exists a δ>0 such that the fiber or Heegaard surface must contain a point at which one of the principal curvatures exceeds 1 + δ in absolute value.