Result: Twistor Theory on a Finite Graph
Title:
Twistor Theory on a Finite Graph
Authors:
Source:
Communications in mathematical physics. 304(2):499-511
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Analyse mathématique, Mathematical analysis, Fonctions de plusieurs variables complexes et espaces analytiques, Several complex variables and analytic spaces, Géométrie, Geometry, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Application conforme, Conformal mapping, Arête graphe, Edge(graph), Arista gráfico, Degré graphe, Graph degree, Grado grafo, Graphe régulier, Regular graph, Grafo regular, Physique mathématique, Mathematical physics, Théorie graphe, Graph theory, 05Cxx, 30C20, 32Axx, 32L25, 51B20, Théorie torseur, Twistor theory
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Département de Mathématiques, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, CS 93837, 29238 Brest, France
ISSN:
0010-3616
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Theoretical physics
Theoretical physics
Accession Number:
edscal.24157756
Database:
PASCAL Archive
Further Information
We show how the description of a shear-free ray congruence in Minkowski space as an evolving family of semi-conformal mappings can naturally be formulated on a finite graph. For this, we introduce the notion of holomorphic function on a graph. On a regular coloured graph of degree three, we recover the space-time picture. In the spirit of twistor theory, where a light ray is the more fundamental object from which space-time points should be derived, the line graph, whose points are the edges of the original graph, should be considered as the basic object. The Penrose twistor correspondence is discussed in this context.