Result: Numerical solutions of time fractional degenerate parabolic equations by variational iteration method with Jumarie-modified Riemann―Liouville derivative

Title:
Numerical solutions of time fractional degenerate parabolic equations by variational iteration method with Jumarie-modified Riemann―Liouville derivative
Authors:
Source:
Mathematical methods in the applied sciences. 34(9):1025-1035
Publisher Information:
Chichester: Wiley, 2011.
Publication Year:
2011
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions réelles, Real functions, Equations aux dérivées partielles, Partial differential equations, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Equation dégénérée, Degenerate equation, Ecuación degenerada, Equation dérivée partielle, Partial differential equation, Ecuación derivada parcial, Equation parabolique, Parabolic equation, Ecuación parabólica, Equation variationnelle, Variational equation, Ecuación variacional, Itération, Iteration, Iteracción, Linéarisation, Linearization, Linearización, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode calcul, Computing method, Método cálculo, Méthode mathématique, Mathematical method, Método matemático, Méthode optimisation, Optimization method, Método optimización, Problème valeur initiale, Initial value problem, Problema valor inicial, Problème valeur limite, Boundary value problem, Problema valor limite, Programmation mathématique, Mathematical programming, Programación matemática, Solution analytique, Analytical solution, Solución analítica, Solution exacte, Exact solution, Solución exacta, Solution numérique, Numerical solution, 26A33, 33E12, 35Kxx, 35XX, 49R50, 65K10, 65Kxx, 65M99, 65Mxx, 65N99, 65Nxx, Mittag-Leffler function, biological population equations, exact solution, fractional calculus, variational iteration method
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Institute for Numerical Mathematics, Potsdam University, 14469, Potsdam, Germany
ISSN:
0170-4214
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24181830
Database:
PASCAL Archive

Further Information

In this article, the fractional variational iteration method is employed for computing the approximate analytical solutions of degenerate parabolic equations with fractional time derivative. The time-fractional derivatives are described by the use of a new approach, the so-called Jumarie modified Riemann-Liouville derivative, instead in the sense of Caputo. The approximate solutions of our model problem are calculated in the form of convergent series with easily computable components. Moreover, the numerical solution is compared with the exact solution and the quantitative estimate of accuracy is obtained. The results of the study reveal that the proposed method with modified fractional Riemann- Liouville derivatives is efficient, accurate, and convenient for solving the fractional partial differential equations in multi-dimensional spaces without using any linearization, perturbation or restrictive assumptions.