Result: Goldstone Solar System Radar Observatory: Earth-Based Planetary Mission Support and Unique Science Results

Title:
Goldstone Solar System Radar Observatory: Earth-Based Planetary Mission Support and Unique Science Results
Source:
Solar System Radar & Radio ScienceProceedings of the IEEE. 99(5):757-769
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 43 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States
California Institute of Technology, Pasadena, CA 91109, United States
ISSN:
0018-9219
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy
Accession Number:
edscal.24181931
Database:
PASCAL Archive

Further Information

The Goldstone Solar System Radar (GSSR) facility is the only fully steerable radar in the world for high-resolution ranging and imaging of planetary and small-body targets. These observations provide information on surface characteristics, orbits, rotations, and polar ices for a wide variety of solar system objects. The resulting data are used not just for scientific studies of these objects, but also for frequent support of the National Aeronautics and Space Administration (NASA) flight projects, including many solar system exploration missions over the last three decades. For example, the GSSR has contributed to the Mars Exploration Rovers (MERs), Cassini, Hayabusa (MUSES-C), MESSENGER, NEAR, SOHO recovery, Mars Pathfinder, Lunar Prospector, Clementine, Magellan, and Viking. Other recent examples include measurement of lunar topography at high resolution near the lunar south pole, which is of particular interest concerning the impact site of the Lunar Crater Observation and Sensing Satellite (LCROSS) mission, and the characterization and orbit refinement of near-Earth asteroids, both for asteroid impact hazard mitigation and for identification of potential targets for future spacecraft missions. We also present important radar scientific results including near-Earth object (NEO) radar imaging of especially interesting objects, and the results from high accuracy determination of Mercury rotation via radar speckle displacement (RSD).