Treffer: Polarization in Bistatic Radar Probing of Planetary Surfaces: Application to Mars Express Data

Title:
Polarization in Bistatic Radar Probing of Planetary Surfaces: Application to Mars Express Data
Source:
Solar System Radar & Radio ScienceProceedings of the IEEE. 99(5):858-874
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 45 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Techniques d'observation et de réduction des données. Simulation et modélisation par ordinateur, Observation and data reduction techniques. Computer modeling and simulation, Techniques d'observation à distance, Remote observing techniques, Système solaire, Solar system, Planètes, leurs satellites et leurs anneaux. Astéroïdes, Planets, their satellites and rings. Asteroids, Mars, Propriétés et caractéristiques des planètes, des satellites, et des astéroïdes, Planetary, asteroid, and satellite characteristics and properties, Surface, formation des cratères et topographie, Surface features, cratering, and topography, Angle Brewster, Brewster's angle, Angulo Brewster, Constante diélectrique, Permittivity, Correction polarisation, Polarization correction, Corrección polarización, Modèle, Models, Modelo, Paramètre Stokes, Stokes parameters, Planète Mars, Mars planet, Polarisation, Polarization, Radar bistatique, Bistatic radar, Radar biestático, Sonde spatiale Mars Express, Mars Express space probe, Sonda espacial Mars Express, Surface planétaire, Planetary surfaces, Arecibo Observatory, Brewster angle, Deep Space Network, Fresnel reflection, Mars Express, Mars, Venus Express, Venus, bistatic radar, cross spectrum, dielectric constant, planets, polarization, quasi-specular, radar, rms surface slope
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Electrical Engineering Department, Stanford University, Stanford, CA 94305-4020, United States
Rheinisches Institut für Umweltforschung Abt, Planetenforschung, 50931 Köln, Germany
Institut fur Raumfahrttechnik, Universität der Bundeswehr München, 85577 Neubiberg, Germany
Jet Propulsion Laboratory, Pasadena, CA 91109-8099, United States
Department of Electrical Engineering, Nile University, Giza 12677, Egypt
ISSN:
0018-9219
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy
Accession Number:
edscal.24181938
Database:
PASCAL Archive

Weitere Informationen

Spacecraft-to-ground bistatic radar provides a straightforward method for surveying planetary surfaces on scales of importance to landers and rovers. Centimeter wavelengths, currently in use for deep-space telecommunications, interact with surface structure of similar to somewhat larger scales. For the quasi-specular component of scattering and for surfaces uniformly illuminated by monochromatic signals from an orbiting or flyby vehicle, the echo Doppler dispersion is proportional to the root mean square (rms) surface slope. When the specular condition occurs within 10°-20° of the Brewster angle, the surface dielectric constant can be derived from relative echo power measured simultaneously in orthogonal polarizations and the Fresnel reflection laws. Cross spectra, computed from outputs of the orthogonally polarized receivers, may be used to calculate a complete description of the polarization properties of the scattered fields. Application to planetary studies requires accurate amplitude and phase calibration of the polarization channels, including correction for any leakage between the two receiving paths, such as from imperfectly isolated antenna feeds. We illustrate these techniques using Mars Express results from Stealth (Medusae Fossae), a region on Mars that has not previously been detected by Earth-based radar, and from a long profile including Acidalia Planitia. Single-location Stealth observations support previous conclusions that the surface is rough and porous (dielectric constant ≈1.4). But the longest experiment (in which the specular point was followed for an hour) yields relatively high dielectric constants (2.8), suggesting that the model is incomplete. The surface of Acidalia Planitia has low dielectric constants (≈2.6) over 60-90 W at 50 N and higher values (≈3.6) as the specular point moves south and crosses the equator.