Treffer: Infinitely many solutions for second-order Hamiltonian system with impulsive effects
Title:
Infinitely many solutions for second-order Hamiltonian system with impulsive effects
Authors:
Source:
Mathematical and computer modelling. 54(1-2):544-555
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Analyse assistée, Computer aided analysis, Análisis asistido, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Equation ordre 2, Second order equation, Ecuación orden 2, Existence solution, Existence of solution, Existencia de solución, Hamiltonien, Hamiltonian, Hamiltoniano, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Modèle mathématique, Mathematical model, Modelo matemático, Méthode optimisation, Optimization method, Método optimización, Point critique, Critical point, Punto crítico, Programmation mathématique, Mathematical programming, Programación matemática, Système hamiltonien, Hamiltonian system, Sistema hamiltoniano, Système impulsif, Impulsive system, Sistema impulsivo, 35B38, 37Jxx, 49R50, 65K10, 65Kxx, Critical points, Hamiltonian systems, Impulsive effects, Variational methods
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Central South University, Changsha, 410075 Hunan, China
Departamento de Análisis Matemático, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
Departamento de Análisis Matemático, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
ISSN:
0895-7177
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24182342
Database:
PASCAL Archive
Weitere Informationen
In this paper, we study the existence of infinitely many solutions for a class of second-order impulsive Hamiltonian systems. By using the variational methods, we give some new criteria to guarantee that the impulsive Hamiltonian systems have infinitely many solutions under the assumptions that the nonlinear term satisfies superquadratics, asymptotically quadratic and subquadratics, respectively. Finally, some examples are presented to illustrate our main results.