Result: Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations

Title:
Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations
Source:
Applied mathematics and computation. 217(19):7579-7587
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 51 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Laboratoire C.E.R.E.C.M.I.A., Université des Antilles et de la Guyane, Campus de Fouillole, 97159 Pointe-à-Pitre, Guadeloupe
ISSN:
0096-3003
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24189465
Database:
PASCAL Archive

Further Information

This paper is concerned with the existence and uniqueness of weighted pseudo almost automorphic mild solution to the semilinear fractional equation: Dxtu(t) = Au(t) + Dx-1tf(t, u(t), Bu(t)), t ∈ ℝ, 1 < α < 2 where A is a linear densely defined operator of sectorial type on a complex Banach space X and B is a bounded linear operator defined on X. Under the assumption of uniformly continuity on f, we establish a composition of weighted pseudo almost automorphic in a general Banach space and obtain existence results by means of Banach contraction mapping. The results obtained are utilized to study the existence and uniqueness of a weighted pseudo almost automorphic solution to fractional diffusion wave equation with Dirichlet conditions.