Treffer: ON ADAPTIVE CHOICE OF SHIFTS IN RATIONAL KRYLOV SUBSPACE REDUCTION OF EVOLUTIONARY PROBLEMS

Title:
ON ADAPTIVE CHOICE OF SHIFTS IN RATIONAL KRYLOV SUBSPACE REDUCTION OF EVOLUTIONARY PROBLEMS
Source:
SIAM journal on scientific computing (Print). 32(5):2485-2496
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2011.
Publication Year:
2011
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Théorie des opérateurs, Operator theory, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Accélération convergence, Convergence acceleration, Aceleración convergencia, Algorithme glouton, Greedy algorithm, Algoritmo glotón, Algorithme récursif, Recursive algorithm, Algoritmo recursivo, Analyse numérique, Numerical analysis, Análisis numérico, Approximation rationnelle, Rational approximation, Aproximación racional, Calcul 3 dimensions, Three-dimensional calculations, Calcul scientifique, Scientific computation, Computación científica, Calcul variationnel, Variational calculus, Cálculo de variaciones, Convergence, Convergencia, Equation Maxwell, Maxwell equation, Ecuación Maxwell, Equation diffusion, Diffusion equation, Ecuación difusión, Fonction matricielle, Matrix function, Función matricial, Loi uniforme, Uniform distribution, Ley uniforme, Méthode optimisation, Optimization method, Método optimización, Méthode sousespace Krylov, Krylov subspace method, Método subespacio Krylov, Programmation mathématique, Mathematical programming, Programación matemática, Taux convergence, Convergence rate, Relación convergencia, 15A15, 47A10, 49XX, 65B99, 65F60, 65K10, 65Kxx, Opérateur spectral, Spectral operator, 30C85, 30E10, 41A05, 41A20, 65M60, greedy algorithm, matrix exponential, matrix function, model reduction, rational approximation, time-domain Maxwell system
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Schlumberger Doll Research, 1 Hampshire St., Cambridge, MA 02139, United States
Massachusetts Institute of Technology, Cambridge, MA 02139, United States
ISSN:
1064-8275
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24190917
Database:
PASCAL Archive

Weitere Informationen

We compute u(t) = exp(―tA)ϕ using rational Krylov subspace reduction for 0 < t < oo, where u(t),ϕ ∈ RN and 0 < A = A* ∈ RN×N. A priori optimization of the rational Krylov subspaces for this problem was considered in [V. Druskin, L. Knizhnerman, and M. Zaslavsky, SIAM J. Sci. Comput., 31 (2009), pp. 3760―3780]. There was suggested an algorithm generating sequences of equidistributed shifts, which are asymptotically optimal for the cases with uniform spectral distributions. Here we develop a recursive greedy algorithm for choice of shifts taking into account nonuniformity of the spectrum. The algorithm is based on an explicit formula for the residual in the frequency domain allowing adaptive shift optimization at negligible cost. The effectiveness of the developed approach is demonstrated in an example of the three-dimensional diffusion problem for Maxwell's equation arising in geophysical exploration. We compare our approach with the one using the above-mentioned equidistributed sequences of shifts. Numerical examples show that our algorithm is able to adapt to the spectral density of operator A. For examples with near-uniform spectral distributions, both algorithms show the same convergence rates, but the new algorithm produces superior convergence for cases with nonuniform spectra.