Result: POSITIVE PN CLOSURES
Title:
POSITIVE PN CLOSURES
Authors:
Source:
SIAM journal on scientific computing (Print). 32(5):2603-2626
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2011.
Publication Year:
2011
Physical Description:
print, 74 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions spéciales, Special functions, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Analyse numérique, Numerical analysis, Análisis numérico, Calcul scientifique, Scientific computation, Computación científica, Calcul variationnel, Variational calculus, Cálculo de variaciones, Equation cinétique, Kinetic equation, Ecuación cinética, Equation linéaire, Linear equation, Ecuación lineal, Equation transport, Transport equation, Ecuación transporte, Harmonique sphérique, Spherical harmonic, Armónica esférica, Méthode optimisation, Optimization method, Método optimización, Programmation mathématique, Mathematical programming, Programación matemática, Programmation quadratique, Quadratic programming, Programación cuadrática, 33C55, 49XX, 65K10, 65Kxx, 41A29, 65M99, 70F45, 82D75, 90C20, PN equations, kinetic equations, moment closures, neutron transport, optimization, quadratic programming, spherical harmonic expansion, transport equations
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Computational Mathematics Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6367, United States
Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843-3133, United States
Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843-3133, United States
ISSN:
1064-8275
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24190923
Database:
PASCAL Archive
Further Information
We introduce a modification to the standard spherical harmonic closure used with linear kinetic equations of particle transport. While the standard closure is known to produce negative particle concentrations, the modification corrects this defect by requiring that the ansatz used to close the equations itself be a nonnegative function. We impose this requirement via explicit constraints in a quadratic optimization problem.