Treffer: The performance measures and randomized optimization for an unreliable server M[x]/G/1 vacation system

Title:
The performance measures and randomized optimization for an unreliable server M[x]/G/1 vacation system
Source:
Applied mathematics and computation. 217(21):8277-8290
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Fiabilité, Reliability, Fiabilidad, File attente, Queue, Fila espera, Fonction répartition, Distribution function, Función distribución, Loi probabilité, Probability distribution, Ley probabilidad, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Processus Poisson, Poisson process, Proceso Poisson, Programmation mathématique, Mathematical programming, Programación matemática, Système attente, Queueing system, Sistema fila espera, 49XX, 65K10, 65Kxx, Batch arrival queue, Randomized control, Server breakdown, Supplementary variable technique, Vacations
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Applied Statistics, National Taichung Institute of Technology, Taichung 404, Tawain, Province of China
Department of Engineering Information System Development, Ardentec Corporation Ltd., Hsing Chu 30351, Tawain, Province of China
Department of Industrial Engineering and Management, National Chiao Tung University, Hsing Chu 300, Tawain, Province of China
ISSN:
0096-3003
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24208696
Database:
PASCAL Archive

Weitere Informationen

This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 - p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (p*,J*) at a minimum cost, and some numerical examples are presented for illustrative purpose.