Result: Symplectic Geometry of Entanglement

Title:
Symplectic Geometry of Entanglement
Source:
Communications in mathematical physics. 305(2):441-468
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
Fakultät für Mathematik, Ruhr-Universitat Bochum, 44780 Bochum, Germany
ISSN:
0010-3616
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.24227884
Database:
PASCAL Archive

Further Information

We present a description of entanglement in composite quantum systems in terms of symplectic geometry. We provide a symplectic characterization of sets of equally entangled states as orbits of group actions in the space of states. In particular, using the Kostant-Sternberg theorem, we show that separable states form a unique symplectic orbit, whereas orbits of entangled states are characterized by different degrees of degeneracy of the canonical symplectic form on the complex projective space. The degree of degeneracy may be thus used as a new geometric measure of entanglement. The above statements remain true for systems with an arbitrary number of components, moreover the presented method is general and can be applied also under different additional symmetry conditions stemming, e.g., from the indistinguishability of particles. We show how to calculate the degeneracy for various multiparticle systems providing also simple criteria of separability.