Result: Regions of meromorphy and value distribution of geometrically converging rational functions

Title:
Regions of meromorphy and value distribution of geometrically converging rational functions
Source:
Journal of mathematical analysis and applications. 382(1):66-76
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Katholische Universität Eichstätt-Ingolstadt, Mathematisch-Geographische Fakultät, 85071 Eichstätt, Germany
Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Acad. Bonchev Str. 8, 1113 Sofia, Bulgaria
ISSN:
0022-247X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24285114
Database:
PASCAL Archive

Further Information

Let D be a region, {rn}n∈ℕ a sequence of rational functions of degree at most n and let each rn have at most m poles in D, for m ∈ ℕ fixed. We prove that if {rn}n∈N converges geometrically to a function f on some continuum S ⊂ D and if the number of zeros of rn in any compact subset of D is of growth o(n) as n → ∞, then the sequence {rn}n∈ℕ converges m1-almost uniformly to a meromorphic function in D. This result about meromorphic continuation is used to obtain Picard-type theorems for the value distribution of m1-maximally convergent rational functions, especially in Padé approximation and Chebyshev rational approximation.