Treffer: Subspace Evolution and Transfer (SET) for Low-Rank Matrix Completion
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We describe a new algorithm, termed subspace evolution and transfer (SET), for solving consistent low-rank matrix completion problems. The algorithm takes as its input a subset of entries of a low-rank matrix and outputs one low-rank matrix consistent with the given observations. The completion task is accomplished by searching for a column space in the Grassmann manifold that matches the incomplete observations. The SET algorithm consists of two parts—subspace evolution and subspace transfer. In the evolution part, we use a gradient descent method on the Grassmann manifold to refine our estimate of the column space. Since the gradient descent algorithm is not guaranteed to converge due to the existence of barriers along the search path, we design a new mechanism for detecting barriers and transferring the estimated column space across the barriers. This mechanism constitutes the core of the transfer step of the algorithm. The SET algorithm exhibits excellent empirical performance for a large range of sampling rates.