Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

Title:
Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method
Source:
Mechanical systems and signal processing. 25(7):2631-2653
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 73 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Acoustique, Acoustics, Traitement des signaux acoustiques, Acoustic signal processing, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Représentation du signal. Analyse spectrale, Signal representation. Spectral analysis, Genie mecanique. Construction mecanique, Mechanical engineering. Machine design, Métrologie industrielle. Contrôle, Industrial metrology. Testing, Généralités, General, Transmissions, Drives, Paliers, coussinets, roulements, Bearings, bushings, rolling bearings, Analyse composante principale, Principal component analysis, Análisis componente principal, Analyse multivariable, Multivariate analysis, Análisis multivariable, Couplage mode, Mode coupling, Acoplamiento modo, Décomposition modale empirique, Empirical mode decomposition, Decomposición modal empírica, Effet non linéaire, Non linear effect, Efecto no lineal, Maîtrise statistique processus, Statistical process control, Control estadístico proceso, Mesure, Measurement, Medida, Monitorage, Monitoring, Monitoreo, Méthode domaine temps fréquence, Time frequency domain method, Método dominio tiempo frecuencia, Méthode échelle multiple, Multiscale method, Método escala múltiple, Processus multivarié, Multivariate process, Proceso multivariable, Rapport signal bruit, Signal to noise ratio, Relación señal ruido, Réduction bruit, Noise reduction, Reducción ruido, Résistance mécanique, Strength, Resistencia mecánica, Système dynamique, Dynamical system, Sistema dinámico, Traitement signal, Signal processing, Procesamiento señal, Transformation Hilbert, Hilbert transformation, Transformación Hilbert, Acoustic emission, Ensemble Empirical Mode Decomposition, Kernel Principal Component Analysis, Large-size low-speed bearing, Vibration
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Modelling in Engineering Sciences and Medicine, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva c. 6, 1000 Ljubljana, Slovenia
ISSN:
0888-3270
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mechanical engineering. Mechanical construction. Handling

Physics: acoustics

Telecommunications and information theory
Accession Number:
edscal.24327845
Database:
PASCAL Archive

Weitere Informationen

The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.