Treffer: Space-Time Network Coding
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Traditional cooperative communications can improve communication reliability. However, transmissions from multiple relay nodes are challenging in practice. Single transmissions in time-division multiple-access (TDMA) manner cause large transmission delay, but simultaneous transmissions from two or more nodes using frequency-division multiple access (FDMA) and code-division multiple access (CDMA) are associated with the issue of imperfect frequency and timing synchronization. In this work, a novel framework for cooperative communications is proposed to achieve full spatial diversity with low transmission delay and eliminate the issue of imperfect synchronization. This is realized by the use of space-time network codes (STNCs) associated with a novel concept of wireless network cocast. For a network of N client nodes, R relay nodes and a base node, the STNCs provide a diversity order of (R + 1) for each symbol with (N + R) time slots, a reduction from 2N time slots in traditional FDMA and CDMA cooperative communications for N being usually greater than R and from N(R + 1) time slots in traditional TDMA cooperative communications. The STNCs are also applied in networks, where the client nodes located in a cluster act as relays to help one another to improve their transmission performance. The performance in clustering setting is studied to show the improvement in power saving, range extension, and transmission rate.