Result: Lossy Multicasting Over Binary Symmetric Broadcast Channels

Title:
Lossy Multicasting Over Binary Symmetric Broadcast Channels
Source:
IEEE transactions on signal processing. 59(8):3915-3929
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 44 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Codage, codes, Coding, codes, Echantillonnage, quantification, Sampling, quantization, Canal binaire, Binary channel, Canal binario, Canal radiodiffusion, Broadcast channels, Codage canal, Channel coding, Codage linéaire, Linear coding, Codificación lineal, Codage source, Source coding, Code binaire, Binary code, Código binario, Code linéaire, Linear code, Código lineal, Concaténation, Concatenation, Concatenación, Correction erreur, Error correction, Corrección error, Diffusion donnée, Data broadcast, Difusion dato, Diffusion information, Information dissemination, Difusión información, Erreur quadratique moyenne, Mean square error, Error medio cuadrático, Erreur transmission, Transmission error, Error transmisión, Mappage, Mapping, Carta de datos, Milieu dissipatif, Lossy medium, Medio dispersor, Multidestinataire, Multicast, Multidestinatario, Méthode raffinement, Refinement method, Método afinamiento, Optimisation, Optimization, Optimización, Quantificateur, Quantifier, Cuantificador, Quantification signal, Signal quantization, Cuantificación señal, Système temps partagé, Time sharing system, Sistema tiempo parcelado, Temps discret, Discrete time, Tiempo discreto, Traitement signal, Signal processing, Procesamiento señal, Block codes, channel-optimized quantization, multicast communication, rateless codes, source-channel coding
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, United States
Intel Mobile Communications, Munich, Germany
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, United States
ISSN:
1053-587X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.24392188
Database:
PASCAL Archive

Further Information

Lossy multicasting of a set of independent, discrete-time, continuous-amplitude source components under the mean square error distortion measure over binary symmetric broadcast channels is investigated. The practically appealing concatenation of successive refinement source coding with broadcast coding and, specifically, time-sharing of linear binary codes, is considered. Three different system optimization criteria are formulated for the lossy multicasting problem. The resulting system optimization is fairly general and applies to a variety of combinations of successive refinement source codes and channel codes. The system optimization is investigated in depth for a class of channel optimized quantization with successive refinement, obtained by using standard embedded scalar quantizers and linear mapping of the (redundant) quantizer bitplanes onto channel codewords by using a systematic Raptor encoder. This scheme is referred to as quantization with linear index coding (QLIC). Unlike existing literature on progressive transmission with unequal error protection or channel optimized quantization, the focus here is on the regime of moderate-to-large code block length and the power of modern sparse-graph codes with iterative belief propagation decoding is leveraged. In this regime, the system optimization takes on the form of simple convex programming that reduces to linear programming for QLIC. The performance of QLIC compares favorably with respect to the state of the art channel optimized quantization in the conventional setting of a single Gaussian source over a binary symmetric channel. For the multicast scenario, the performance gap incurred by the practical QLIC design with respect to ideal source and channel codes is quantified.