Treffer: Weighted Sum-Rate Maximization for a Set of Interfering Links via Branch and Bound

Title:
Weighted Sum-Rate Maximization for a Set of Interfering Links via Branch and Bound
Source:
IEEE transactions on signal processing. 59(8):3977-3996
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 80 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Gestion ressources, Resource management, Gestión recursos, Gestion trafic, Traffic management, Gestión tráfico, Algorithme, Algorithm, Algoritmo, Allocation ressource, Resource allocation, Asignación recurso, Architecture réseau, Network architecture, Arquitectura red, Commande puissance, Power control, Control potencia, Diffusion donnée, Data broadcast, Difusion dato, Diffusion information, Information dissemination, Difusión información, Evaluation performance, Performance evaluation, Evaluación prestación, Multidestinataire, Multicast, Multidestinatario, Méthode analytique, Analytical method, Método analítico, Méthode heuristique, Heuristic method, Método heurístico, Méthode séparation et évaluation, Branch and bound method, Método branch and bound, Optimum global, Global optimum, Optimo global, Ordonnancement, Scheduling, Reglamento, Problème NP difficile, NP hard problem, Problema NP duro, Programmation non convexe, Non convex programming, Programación no convexa, Régulation débit, Flow rate regulation, Regulación caudal, Régulation trafic, Traffic control, Regulación tráfico, Réseau bond multiple, Multihop network, Red multisalto, Réseau sans fil, Wireless network, Red sin hilo, Structure topologique, Topological structure, Estructura topológica, Traitement signal, Signal processing, Procesamiento señal, Télécommunication sans fil, Wireless telecommunication, Telecomunicación sin hilo, Télétrafic, Teletraffic, Teletráfico, Approche de type couches croisées, Cross-layer approach, Branch and bound, global (nonconvex) optimization, interference, link scheduling, power and rate control, wireless networks
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Centre for Wireless Communications, University of Oulu, Oulu FI-90014, Finland
University of Maryland, College Park, MD 20742, United States
ISSN:
1053-587X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.24392193
Database:
PASCAL Archive

Weitere Informationen

We consider the problem of weighted sum-rate maximization (WSRMax) for a set of interfering links. It plays a central role in resource allocation, link scheduling or in finding achievable rate regions for both wireline and wireless networks. This problem is known to be NP-hard. We propose a solution method, based on the branch and bound technique, which solves globally the nonconvex WSRMax problem with an optimality certificate. Efficient analytic bounding techniques are introduced and their impact on the convergence is numerically evaluated. The considered link-interference model is general enough to model a wide range of network topologies with various node capabilities, e.g., single- or multipacket transmission (or reception), simultaneous transmission and reception. Several applications, including cross-layer network utility maximization and maximum weighted link scheduling for multihop wireless networks as well as finding achievable rate regions for singlecast/multicast wireless networks, are presented. The proposed algorithm can be further used to provide other performance benchmarks by back-substituting it into any network design method which relies on WSRMax. It is also very useful for evaluating the performance loss encountered by any heuristic algorithm.