Treffer: Central Subspace Dimensionality Reduction Using Covariance Operators

Title:
Central Subspace Dimensionality Reduction Using Covariance Operators
Source:
IEEE transactions on pattern analysis and machine intelligence. 33(4):657-670
Publisher Information:
Los Alamitos, CA: IEEE Computer Society, 2011.
Publication Year:
2011
Physical Description:
print, 33 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Analyse canonique, Canonical analysis, Análisis canónico, Analyse discriminante, Discriminant analysis, Análisis discriminante, Analyse régression, Regression analysis, Análisis regresión, Analyse statistique, Statistical analysis, Análisis estadístico, Apprentissage supervisé, Supervised learning, Aprendizaje supervisado, Base de données multidimensionnelle, Multidimensional database, Base dato multidimensional, Corrélation canonique, Canonical correlation, Correlación canónica, Covariance, Covariancia, Entrée sortie, Input output, Entrada salida, Espace vectoriel, Vector space, Espacio vectorial, Matrice inverse, Inverse matrix, Matriz inversa, Modélisation, Modeling, Modelización, Méthode corrélation, Correlation method, Método correlación, Méthode itérative, Iterative method, Método iterativo, Méthode noyau, Kernel method, Método núcleo, Méthode réduction, Reduction method, Método reducción, Programmation non convexe, Non convex programming, Programación no convexa, Réduction dimension, Dimension reduction, Reducción dimensión, Solution exacte, Exact solution, Solución exacta, Tranchage, Slicing, Chapeado, -Dimensionality reduction, kernel methods, regression, supervised learning
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electronic and Information Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea, Republic of
Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, United States
ISSN:
0162-8828
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.24415963
Database:
PASCAL Archive

Weitere Informationen

We consider the task of dimensionality reduction informed bv real-valued multivariate labels. The problem is often treated as Dimensionality Reduction for Regression (DRR), whose goal is to find a low-dimensional representation, the central subspace, of the input data that preserves the statistical correlation with the targets. A class of DRR methods exploits the notion of inverse regression (IR) to discover central subspaces. Whereas most existing IR techniques rely on explicit output space slicing, we propose a novel method called the Covariance Operator Inverse Regression (COIR) that generalizes IR to nonlinear input/output spaces without explicit target slicing. COIR's unique properties make DRR applicable to problem domains with high-dimensional output data corrupted by potentially significant amounts of noise. Unlike recent kernel dimensionality reduction methods that employ iterative nonconvex optimization, COIR yields a closed-form solution. We also establish the link between COIR, other DRR techniques, and popular supervised dimensionality reduction methods, including canonical correlation analysis and linear discriminant analysis. We then extend COIR to semi-supervised settings where many of the input points lack their labels. We demonstrate the benefits of COIR on several important regression problems in both fully supervised and semi-supervised settings.