Treffer: Optimization-based mapping framework for parallel applications

Title:
Optimization-based mapping framework for parallel applications
Source:
Journal of parallel and distributed computing (Print). 71(10):1377-1387
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 50 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Affectation quadratique, Quadratic assignment, Afectación cuadrática, Algorithme glouton, Greedy algorithm, Algoritmo glotón, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Algorithme randomisé, Randomized algorithm, Algoritmo aleatorizado, Application spatiale, Space application, Aplicación espacial, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Calcul réparti, Distributed computing, Cálculo repartido, Cube, Cubo, Echange total, Gossiping(all to all), Todos a todos, Optimisation, Optimization, Optimización, Ordonnancement, Scheduling, Reglamento, Parallélisme, Parallelism, Paralelismo, Raisonnement basé sur cas, Case based reasoning, Razonamiento fundado sobre caso, Superordinateur, Supercomputer, Supercomputador, Système réparti, Distributed system, Sistema repartido, Système temps partagé, Time sharing system, Sistema tiempo parcelado, Temps partagé, Time sharing, Tiempo dividido, Topologie, Topology, Topología, Tore, Torus, Toro, Assignment Problem, Mapping as an instance of the Quadratic, Mappings on 2D and 3D cubes, Optimization-based mapping of parallel applications, Scheduling for supercomputers
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Intelligent Systems Group, School of Computer Science, The University of the Basque Country UPV/EHU, P. Manuel Lardizabal 1, San Sebastian, 20018, Spain
ISSN:
0743-7315
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.24476861
Database:
PASCAL Archive

Weitere Informationen

The mapping of tasks of a parallel program onto nodes of a parallel computing system has a remarkable impact on application performance. In this paper we propose an optimization framework to solve the mapping problem, which takes into account the communication matrix of the application and a cost matrix that depends on the topology of the parallel system. This cost matrix is usually a distance matrix (the classic approach), but we propose a novel definition of the cost criterion, applicable to torus networks, that tries to distribute traffic evenly over the different axes; we call this the Traffic Distribution criterion. As the mapping problem can be seen as a particular instance of the Quadratic Assignment Problem (QAP), we can apply any QAP solver to this problem. In particular, we use a greedy randomized algorithm. Using simulation, we test the performance levels of the optimization-based mappings, and compare them with those of trivial mappings (consecutive, random), in two different environments: single application (one application uses all system resources all the time) and space sharing (several applications run simultaneously, on different system partitions), using systems with 2D and 3D topologies and real application traffic. Experimental results show that some applications do not benefit from optimization-based mappings: those in which there is a match between virtual and physical topologies, and those that carry out massive all-to-all communications. In other cases, optimization-based mappings with the TD criterion provide excellent performance levels.