Treffer: Variable neighbourhood search heuristics for the probabilistic multi-source Weber problem
Peppers and Rogers Group, Istanbul, Turkey
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
The Multi-source Weber Problem (MWP) is concerned with locating m facilities in the Euclidean plane, and allocating these facilities to n customers at minimum total cost. The deterministic version of the problem, which assumes that customer locations and demands are known with certainty, is a non-convex optimization problem and difficult to solve. In this work, we focus on a probabilistic extension and consider the situation where customer locations are randomly distributed according to a bivariate distribution. We first present a mathematical programming formulation for the probabilistic MWP called the PMWP. For its solution, we propose two heuristics based on variable neighbourhood search (VNS). Computational results obtained on a number of test instances show that the VNS heuristics improve the performance of a probabilistic alternate location-allocation heuristic referred to as PALA. In its original form, the applicability of the new heuristics depends on the existence of a closed-form expression for the expected distances between facilities and customers. Unfortunately, such an expression exists only for a few distance function and probability distribution combinations. We therefore use two approximation methods for the expected distances, which make the VNS heuristics applicable for any distance function and bivariate distribution of customer locations.