Result: An M/M/c queue model for hub covering location problem

Title:
An M/M/c queue model for hub covering location problem
Source:
Mathematical and computer modelling. 54(11-12):2623-2638
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 31 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Plans d'expériences et configurations, Designs and configurations, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme optimal, Optimal algorithm, Algoritmo óptimo, Analyse assistée, Computer aided analysis, Análisis asistido, Analyse numérique, Numerical analysis, Análisis numérico, Calcul scientifique, Scientific computation, Computación científica, Complexité calcul, Computational complexity, Complejidad computación, Conception système, System design, Concepción sistema, File attente, Queue, Fila espera, Loi probabilité, Probability distribution, Ley probabilidad, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Modèle linéaire, Linear model, Modelo lineal, Modèle mathématique, Mathematical model, Modelo matemático, Méthode optimisation, Optimization method, Método optimización, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Problème localisation, Location problem, Problema localización, Problème recouvrement, Covering problem, Problema recubrimiento, Programmation linéaire, Linear programming, Programación lineal, Programmation mathématique, Mathematical programming, Programación matemática, Programmation non linéaire, Non linear programming, Programación no lineal, Réseau télécommunication, Telecommunication network, Red telecomunicación, Solution optimale, Optimal solution, Solución óptima, Système transport, Transportation system, Sistema de transporte, Variable aléatoire, Random variable, Variable aléatoria, 05B40, 05Bxx, 49J30, 49K30, 65K05, 65Kxx, Evolutionary computations, Facilities planning and design, Hub covering location, Imperialist Competitive Algorithm, Location, Queuing
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran, Islamic Republic of
Department of Industrial Engineering, College of Engineering, University of Tabriz, Tabriz, Iran, Islamic Republic of
ISSN:
0895-7177
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24559700
Database:
PASCAL Archive

Further Information

The hub location problem appears in a variety of applications including airline systems, cargo delivery systems, and telecommunication network design. Hub location problems deal with finding the location of hub facilities and the allocation of demand nodes to these located hub facilities. We consider a hub-and-spoke network problem with crowdedness or congestion in the system. The transportation time and the rate of arrived trucks to each hub are random variables. In addition, a hub cannot service all trucks simultaneously and it has some restrictions like capacity constraint and the service time limitations. Hubs, which are the most crowded parts of network, are modeled as M/M/c queuing systems. In the application of the proposed model for a cargo transportation system, the number of trucks follows Poisson probability distribution in the queuing system. In this paper at first a nonlinear mathematical programming is presented to find an optimal solution for the considered problem. A probabilistic constraint is included to ensure that the probability of b trucks in a queue is less than a threshold value θ for each hub. Then, we transfer the introduced nonlinear constraints of the mathematical programming model to the linear constraints. Due to the computational complexity of the resulted model, we propose an improved meta-heuristic based on Imperialist Competitive Algorithm and Genetic Algorithm to find near optimal solution of the problem. The performance of the solutions found by the proposed improved meta-heuristic is compared with those of pure GA and those of the mathematical programming model.