Result: Optimization of nonlinear geological structure mapping using hybrid neuro-genetic techniques
Fundamental and Applied Sciences Department, University Technology Petronas, Malaysia
Electrical & Electronic Engineering Department, University Technology Petronas, Malaysia
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
A fairly reasonable result was obtained for nonlinear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the nonlinear problems to obtain a better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.