Treffer: On approximating weakly/properly efficient solutions in multi-objective programming

Title:
On approximating weakly/properly efficient solutions in multi-objective programming
Source:
Mathematical and computer modelling. 54(11-12):3172-3181
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 31 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Analyse assistée, Computer aided analysis, Análisis asistido, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Condition nécessaire suffisante, Necessary and sufficient condition, Condición necesaria suficiente, Convexité, Convexity, Convexidad, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Modèle mathématique, Mathematical model, Modelo matemático, Méthode optimisation, Optimization method, Método optimización, Programmation mathématique, Mathematical programming, Programación matemática, Solution optimale, Optimal solution, Solución óptima, 49J30, 49K30, 49XX, 65K10, 65Kxx, Approximate solution, Multi-objective optimization, Scalarization method, ε-proper efficiency
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424, HafezAvenue, 15914 Tehran, Iran, Islamic Republic of
ISSN:
0895-7177
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24559751
Database:
PASCAL Archive

Weitere Informationen

This paper deals with approximate solutions of general (that is, without any convexity assumption) multi-objective optimization problems (MOPs). In this text, by reviewing some standard scalarization techniques we are interested in finding the relationships between ε-(weakly, properly) efficient points of an MOP and E-optimal solutions of the related scalarized problem. For this purpose, the relationships between ∈ ∈ ℝ≧ and ε ∈ ℝm≧, for a single objective and multi-objective problems, respectively, are analyzed. In fact, necessary and/or sufficient conditions for approximating (weakly, properly) efficient points of a general MOP via approximate solutions of the scalarized problems are obtained.