Result: Quantum Diffusion and Delocalization for Band Matrices with General Distribution
Department of Mathematics Harvard University, Cambridge, MA 02138, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Further Information
We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements Hxy, indexed by x, y ∈ A C Zd, are independent and their variances satisfy σ2xy := E|Hxy|2 = W―df((x ― y)/W) for some probability density f. We assume that the law of each matrix element Hxy is symmetric and exhibits subexponential decay. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales t ≪ Wd/3. We also show that the localization length of the eigenvectors of H is larger than a factor Wd/6 times the band width W. All results are uniform in the size |Λ| of the matrix. This extends our recent result (Erdős and Knowles in Commun. Math. Phys., 2011) to general band matrices. As another consequence of our proof we show that, for a larger class of random matrices satisfying ∑x σ2xy = 1 for all y, the largest eigenvalue of H is bounded with high probability by 2 + M―2/3+ε for any ε > 0, where M := 1/(maxx,y σ2xy).