Result: Quantum Diffusion and Delocalization for Band Matrices with General Distribution

Title:
Quantum Diffusion and Delocalization for Band Matrices with General Distribution
Source:
Annales Henri Poincaré. 12(7):1227-1319
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 8 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Physics, Physique, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Lois de probabilités, Distribution theory, Statistiques, Statistics, Inférence linéaire, régression, Linear inference, regression, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Densité probabilité, Probability density, Densidad probabilidad, Diffusion, Scattering, Distribution, Elément matriciel, Matrix elements, Fonction répartition, Distribution function, Función distribución, Hamiltonien, Hamiltonians, Indice, Index, Largeur, Width, Localisation, Localization, Localización, Loi probabilité, Probability distribution, Ley probabilidad, Matrice aléatoire, Random matrix, Matriz aleatoria, Matrice symétrique, Symmetric matrix, Matriz simétrica, Physique mathématique, Mathematical physics, Probabilité, Probability, Valeur propre, Eigenvalues, Variance, Variancia, Vecteur propre, Eigenvectors, 60E05, 62J10, 65F15, 65H17, Evolution temporelle
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Mathematics University of Munich Theresienstr. 39, 80333 Munich, Germany
Department of Mathematics Harvard University, Cambridge, MA 02138, United States
ISSN:
1424-0637
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.24576604
Database:
PASCAL Archive

Further Information

We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements Hxy, indexed by x, y ∈ A C Zd, are independent and their variances satisfy σ2xy := E|Hxy|2 = W―df((x ― y)/W) for some probability density f. We assume that the law of each matrix element Hxy is symmetric and exhibits subexponential decay. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales t ≪ Wd/3. We also show that the localization length of the eigenvectors of H is larger than a factor Wd/6 times the band width W. All results are uniform in the size |Λ| of the matrix. This extends our recent result (Erdős and Knowles in Commun. Math. Phys., 2011) to general band matrices. As another consequence of our proof we show that, for a larger class of random matrices satisfying ∑x σ2xy = 1 for all y, the largest eigenvalue of H is bounded with high probability by 2 + M―2/3+ε for any ε > 0, where M := 1/(maxx,y σ2xy).