Treffer: A new combinatorial identity for unicellular maps, via a direct bijective approach

Title:
A new combinatorial identity for unicellular maps, via a direct bijective approach
Source:
Advances in applied mathematics (Print). 47(4):874-893
Publisher Information:
San Diego, CA: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
ISSN:
0196-8858
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24591647
Database:
PASCAL Archive

Weitere Informationen

A unicellular map, or one-face map, is a graph embedded in an orientable surface such that its complement is a topological disk. In this paper, we give a new viewpoint to the structure of these objects, by describing a decomposition of any unicellular map into a unicellular map of smaller genus. This gives a new combinatorial identity for the number ∈g(n) of unicellular maps with n edges and genus g. Unlike the Harer-Zagier recurrence formula, this identity is recursive in only one parameter (the genus). Iterating the construction gives an explicit bijection between unicellular maps and plane trees with distinguished vertices, which gives a combinatorial explanation (and proof) of the fact that ∈g(n) is the product of the n-th Catalan number by a polynomial in n. The combinatorial interpretation also gives a new and simple formula for this polynomial. Variants of the problem are considered, like bipartite unicellular maps, or unicellular maps with only cubic vertices.