Treffer: Order-Preserving Factor Analysis—Application to Longitudinal Gene Expression
E3S—Supélec Systems Sciences/Signal Processing and Electronic Systems Department, Supélec, France
School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
Institute for Genome Sciences and Policy, Duke University, Durham, NC 27706, United States
Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27706, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We present a novel factor analysis method that can be applied to the discovery of common factors shared among trajectories in multivariate time series data. These factors satisfy a precedence-ordering property: certain factors are recruited only after some other factors are activated. Precedence-ordering arise in applications where variables are activated in a specific order, which is unknown. The proposed method is based on a linear model that accounts for each factor's inherent delays and relative order. We present an algorithm to fit the model in an unsupervised manner using techniques from convex and nonconvex optimization that enforce sparsity of the factor scores and consistent precedence-order of the factor loadings. We illustrate the order-preserving factor analysis (OPFA) method for the problem of extracting precedence-ordered factors from a longitudinal (time course) study of gene expression data.