Treffer: Stochastic Multiobjective Optimization: Sample Average Approximation and Applications
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
We investigate one stage stochastic multiobjective optimization problems where the objectives are the expected values of random functions. Assuming that the closed form of the expected values is difficult to obtain, we apply the well known Sample Average Approximation (SAA) method to solve it. We propose a smoothing infinity norm scalarization approach to solve the SAA problem and analyse the convergence of efficient solution of the SAA problem to the original problem as sample sizes increase. Under some moderate conditions, we show that, with probability approaching one exponentially fast with the increase of sample size, an ∈-optimal solution to the SAA problem becomes an ∈-optimal solution to its true counterpart. Moreover, under second order growth conditions, we show that an efficient point of the smoothed problem approximates an efficient solution of the true problem at a linear rate. Finally, we describe some numerical experiments on some stochastic multiobjective optimization problems and report preliminary results.