Result: Trust, But Verify: Fast and Accurate Signal Recovery From 1-Bit Compressive Measurements
Department of Mathematics and Institute of Natural Sciences, Shanghai Jiaotong University, Shanghai, China
Department of Computational and Applied Mathematics, Rice University, Houston, TX 30332, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
The recently emerged compressive sensing (CS) framework aims to acquire signals at reduced sample rates compared to the classical Shannon-Nyquist rate. To date, the CS theory has assumed primarily real-valued measurements; it has recently been demonstrated that accurate and stable signal acquisition is still possible even when each measurement is quantized to just a single bit. This property enables the design of simplified CS acquisition hardware based around a simple sign comparator rather than a more complex analog-to-digital converter; moreover, it ensures robustness to gross nonlinearities applied to the measurements. In this paper we introduce a new algorithm—restricted—step shrinkage (RSS)—to recover sparse signals from 1-bit CS measurements. In contrast to previous algorithms for 1-bit CS, RSS has provable convergence guarantees, is about an order of magnitude faster, and achieves higher average recovery signal-to-noise ratio. RSS is similar in spirit to trust-region methods for nonconvex optimization on the unit sphere, which are relatively unexplored in signal processing and hence of independent interest.