Treffer: Monte Carlo Optimization of Decentralized Estimation Networks Over Directed Acyclic Graphs Under Communication Constraints

Title:
Monte Carlo Optimization of Decentralized Estimation Networks Over Directed Acyclic Graphs Under Communication Constraints
Source:
IEEE transactions on signal processing. 59(11):5558-5576
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Algorithme, Algorithm, Algoritmo, Champ aléatoire, Random field, Campo aleatorio, Consommation électricité, Electric power consumption, Consumo electricidad, Dégradation, Degradation, Degradación, Détecteur image, Image sensor, Detector imagen, Détection signal, Signal detection, Detección señal, Envoi message, Message passing, Erreur estimation, Estimation error, Error estimación, Extensibilité, Scalability, Estensibilidad, Graphe acyclique, Acyclic graph, Grafo acíclico, Graphe orienté, Directed graph, Grafo orientado, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Opérateur intégral, Integral operator, Operador integral, Précision, Accuracy, Precisión, Réseau capteur, Sensor array, Red sensores, Réseau sans fil, Wireless network, Red sin hilo, Simulation numérique, Numerical simulation, Simulación numérica, Système décentralisé, Decentralized system, Sistema descentralizado, Théorie graphe, Graph theory, Teoría grafo, Traitement signal, Signal processing, Procesamiento señal, Télécommunication sans fil, Wireless telecommunication, Telecomunicación sin hilo, Télédétection, Remote sensing, Teledetección, Vision artificielle, Artificial vision, Visión artificial, -Communication constrained inference, Monte Carlo methods, decentralized estimation, graphical models, in-network processing, message passing algorithms, random fields, wireless sensor networks
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı-Tuzla 34956 İstanbul, Turkey
ISSN:
1053-587X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.24707431
Database:
PASCAL Archive

Weitere Informationen

Motivated by the vision of sensor networks, we consider decentralized estimation networks over bandwidth-limited communication links, and are particularly interested in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We employ a class of in-network processing strategies that admits directed acyclic graph representations and yields a tractable Bayesian risk that comprises the cost of communications and estimation error penalty. This perspective captures a broad range of possibilities for processing under network constraints and enables a rigorous design problem in the form of constrained optimization. A similar scheme and the structures exhibited by the solutions have been previously studied in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization scheme involves integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both the in-network processing strategies and their optimization. The proposed Monte Carlo optimization procedure operates in a scalable and efficient fashion and, owing to the nonparametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk.