Result: Dimensional Reduction Over the Quantum Sphere and Non-Abelian q-Vortices
INFN, Sezione di Trieste, Trieste, Italy
Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, United Kingdom
Maxwell Institute for Mathematical Sciences, Edinburgh, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Further Information
We extend equivariant dimensional reduction techniques to the case of quantum spaces which are the product of a Kähler manifold M with the quantum two-sphere. We work out the reduction of bundles which are equivariant under the natural action of the quantum group SUq(2), and also of invariant gauge connections on these bundles. The reduction of Yang-Mills gauge theory on the product space leads to a q-deformation of the usual quiver gauge theories on M. We formulate generalized instanton equations on the quantum space and show that they correspond to q-deformations of the usual holomorphic quiver chain vortex equations on M. We study some topological stability conditions for the existence of solutions to these equations, and demonstrate that the corresponding vacuum moduli spaces are generally better behaved than their undeformed counterparts, but much more constrained by the q-deformation. We work out several explicit examples, including new examples of non-abelian vortices on Riemann surfaces, and q-deformations of instantons whose moduli spaces admit the standard hyper-Kähler quotient construction.