Treffer: Liouville Integrability of a Class of Integrable Spin Calogero-Moser Systems and Exponents of Simple Lie Algebras

Title:
Liouville Integrability of a Class of Integrable Spin Calogero-Moser Systems and Exponents of Simple Lie Algebras
Source:
Communications in mathematical physics. 308(2):415-438
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 1 p
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States
Department of Mathematics, Pennsylvania State University, Altoona Campus, 3000 Ivyside Park, Altoona, PA 16601, United States
Current address: Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, United States
ISSN:
0010-3616
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.24765435
Database:
PASCAL Archive

Weitere Informationen

In previous work, we introduced a class of integrable spin Calogero-Moser systems associated with the classical dynamical r-matrices with spectral parameter, as classified by Etingof and Varchenko for simple Lie algebras. Here the main purpose is to establish the Liouville integrability of these systems by a uniform method based on evaluating the primitive invariants of Chevalley on the Lax operators with spectral parameter. As part of our analysis, we will develop several results concerning the algebra of invariant polynomials on simple Lie algebras and their expansions.