Result: Chance-Constrained Optimal Path Planning With Obstacles

Title:
Chance-Constrained Optimal Path Planning With Obstacles
Source:
IEEE transactions on robotics. 27(6):1080-1094
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 52 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Automatique théorique. Systèmes, Control theory. Systems, Robotique, Robotics, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Aéronef, Aircraft, Aeronave, Chemin optimal, Optimal path, Camino óptimo, Collision, Colisión, Commande sous optimale, Suboptimal control, Control subóptimo, Engin terrestre autonome, unmanned ground vehicles, Máquina autónoma terrestre, Esquive collision, Collision avoidance, Esquiva colisión, Localisation, Localization, Localización, Modélisation, Modeling, Modelización, Méthode séparation et évaluation, Branch and bound method, Método branch and bound, Obstacle, Obstáculo, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Personnalisation, Customization, Personalización, Planification optimale, Optimal planning, Planificación óptima, Processus Gauss, Gaussian process, Proceso Gauss, Production petite série, Small series production, Producción pequeña serie, Programmation convexe, Convex programming, Programación convexa, Programmation non convexe, Non convex programming, Programación no convexa, Robot mobile, Moving robot, Robot móvil, Système autonome, Autonomous system, Sistema autónomo, Système incertain, Uncertain system, Sistema incierto, Trajectoire optimale, Optimal trajectory, Trayectoria óptima, Planification trajectoire, Path planning, Planificación de Trayectoria, Autonomous agents, chance constraints, optimization under uncertainty, probabilistic planning
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States
Massachusetts Institute of Technology, Cambridge, MA 02139, United States
ISSN:
1552-3098
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.25356875
Database:
PASCAL Archive

Further Information

Autonomous vehicles need to plan trajectories to a specified goal that avoid obstacles. For robust execution, we must take into account uncertainty, which arises due to uncertain localization, modeling errors, and disturbances. Prior work handled the case of set-bounded uncertainty. We present here a chance-constrained approach, which uses instead a probabilistic representation of uncertainty. The new approach plans the future probabilistic distribution of the vehicle state so that the probability of failure is below a specified threshold. Failure occurs when the vehicle collides with an obstacle or leaves an operator-specified region. The key idea behind the approach is to use bounds on the probability of collision to show that, for linear-Gaussian systems, we can approximate the nonconvex chance-constrained optimization problem as a disjunctive convex program. This can be solved to global optimality using branch-and-bound techniques. In order to improve computation time, we introduce a customized solution method that returns almost-optimal solutions along with a hard bound on the level of suboptimality. We present an empirical validation with an aircraft obstacle avoidance example.