Treffer: Hausdorff dimensions of the divergence points of self-similar measures with the open set condition

Title:
Hausdorff dimensions of the divergence points of self-similar measures with the open set condition
Source:
Nonlinearity (Bristol. Print). 25(1):93-105
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, South China University of Technology, Guangzhou 510641, China
Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, China
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.25413656
Database:
PASCAL Archive

Weitere Informationen

Let μ be the self-similar measure supported on the self-similar set K with the open set condition. For x ∈ K, let A(D(x)) denote the set of accumulation points of Dr (x) := log μ (B(x,r))/log r as r ↘ 0. In this paper, we show that the set A(D(x)) is either a singleton or a closed subinterval of ℝ for any x ∈ K, and for any closed subinterval I ⊂ ℝ determines the Hausdorff dimension of the set of points x for which the set A(D(x)) equals I. Our main result solves the conjecture posed by Olsen and Winter (2003 J. Lond. Math. Soc. 67 103-22) positively and generalizes the classical result of Arbeiter and Patzschke (1996 Math. Nachr. 181 5-42).