Treffer: Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks
Brigham Young University, Department of Mathematics, Provo, UT 84602, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Weitere Informationen
In this paper we present a general procedure that allows for the reduction or expansion of any network (considered as a weighted graph). This procedure maintains the spectrum of the network's adjacency matrix up to a set of eigenvalues known beforehand from its graph structure. This procedure can be used to establish new equivalence relations on the class of all weighted graphs (networks) where two graphs are equivalent if they can be reduced to the same graph. Additionally, dynamical networks (or any finite dimensional, discrete time dynamical system) can be analysed using isospectral transformations. By doing so we obtain stronger results regarding the global stability (strong synchronization) of dynamical networks when compared with other standard methods.