Treffer: Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities

Title:
Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities
Source:
Nonlinearity (Bristol. Print). 25(2):279-307
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 36 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Algèbre, Algebra, Algèbres et anneaux commutatifs, Commutative rings and algebras, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Condition existence, Existence condition, Condición existencia, Equation Duffing, Duffing equation, Ecuación Duffing, Equation semi linéaire, Semi linear equation, Ecuación semi lineal, Equation singulière, Singular equation, Ecuación singular, Existence solution, Existence of solution, Existencia de solución, Multiplicité, Multiplicity, Multiplicidad, Nombre entier, Integer, Entero, Oscillation, Oscilación, Physique mathématique, Mathematical physics, Física matemática, Singularité, Singularity, Singularidad, Solution positive, Positive solution, Solución positiva, Solution périodique, Periodic solution, Solución periódica, Solution singulière, Singular solution, Solución singular, Théorème Birkhoff, Birkhoff theorem, Teorema Birkhoff, 13H15, Solution équation
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.25499519
Database:
PASCAL Archive

Weitere Informationen

In this paper, we deal with the existence of positive periodic solutions of singular resonant Duffing equations where g has a singularity at x = 0 and n is a positive integer. We give an explicit condition to ensure the existence of positive 2π-periodic solutions when the limit limx→+∞ g(x) = g(+oo) exists and is finite. On the basis of this conclusion, we give an answer to the problem raised by Del Pino and Manásevich. We also study the multiplicity of positive periodic solutions of singular Duffing equations When g satisfies the semilinear condition at infinity and the time map satisfies an oscillation condition, we prove that the given equation possesses infinitely many positive 2n-periodic solutions by using the Poincaré―Birkhoff theorem.