Treffer: Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Weitere Informationen
In this paper, we deal with the existence of positive periodic solutions of singular resonant Duffing equations where g has a singularity at x = 0 and n is a positive integer. We give an explicit condition to ensure the existence of positive 2π-periodic solutions when the limit limx→+∞ g(x) = g(+oo) exists and is finite. On the basis of this conclusion, we give an answer to the problem raised by Del Pino and Manásevich. We also study the multiplicity of positive periodic solutions of singular Duffing equations When g satisfies the semilinear condition at infinity and the time map satisfies an oscillation condition, we prove that the given equation possesses infinitely many positive 2n-periodic solutions by using the Poincaré―Birkhoff theorem.