Treffer: Statistical properties of nonuniformly expanding ID maps with logarithmic singularities
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Weitere Informationen
We study the statistical properties of piecewise smooth maps on a circle, with a finite number of critical and singular points with an unbounded derivative, such that the derivative goes like the inverse of the distance to the singular points. We write down a simple set of conditions, and show that when these conditions are met, there exist an absolutely continuous invariant probability measure with exponential decay of correlations. We also rule out the existence of nontrivial coboundary, and obtain a positive variance in the central limit theorem for any nonconstant Holder continuous observable. Our results apply to a positive measure set of nonuniformly expanding maps on the circle considered by Takahasi and Wang (2012 Nonlinearity 25 533).