Treffer: Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots

Title:
Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots
Source:
Communications in statistics. Simulation and computation. 41(1-2):141-154
Publisher Information:
Colchester: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 1 p.1/4
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Lois de probabilités, Distribution theory, Analyse multivariable, Multivariate analysis, Inférence linéaire, régression, Linear inference, regression, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Algorithme, Algorithm, Algoritmo, Analyse corrélation, Correlation analysis, Análisis correlación, Analyse covariance, Covariance analysis, Análisis covariancia, Analyse discriminante, Discriminant analysis, Análisis discriminante, Analyse multivariable, Multivariate analysis, Análisis multivariable, Analyse numérique, Numerical analysis, Análisis numérico, Analyse variance, Variance analysis, Análisis variancia, Association statistique, Statistical association, Asociación estadística, Corrélation, Correlation, Correlación, Distribution statistique, Statistical distribution, Distribución estadística, Estimation erreur, Error estimation, Estimación error, Estimation non paramétrique, Non parametric estimation, Estimación no paramétrica, Estimation statistique, Statistical estimation, Estimación estadística, Hétéroscedasticité, Heteroscedasticity, Heteroscedasticidad, Indépendance, Independence, Independencia, Intervalle confiance, Confidence interval, Intervalo confianza, Loi normale, Gaussian distribution, Curva Gauss, Modèle linéaire généralisé, Generalized linear model, Modelo lineal generalizado, Modèle linéaire, Linear model, Modelo lineal, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Méthode calcul, Computing method, Método cálculo, Méthode statistique, Statistical method, Método estadístico, Méthode stochastique, Stochastic method, Método estocástico, Observation aberrante, Outlier, Observación aberrante, Probabilité, Probability, Probabilidad, Régression statistique, Statistical regression, Regresión estadística, Simulation numérique, Numerical simulation, Simulación numérica, Technique diagnostic, Diagnostic techniques, Test normalité, Normality test, Test normalidad, Test statistique, Statistical test, Test estadístico, Théorie approximation, Approximation theory, Tolérance, Tolerance, Tolerancia, Transformation donnée, Data transformation, Transformación dato, Variance, Variancia, 13H15, 62E17, 62F25, 62G15, 62H20, 62H30, 62J10, 62J12, 65C05, 65C50, Classification automatique(statistiques), Estimation paramétrique, Intervalle tolérance, Tolerance interval, Non normalité, Non normality, Constant residual variance, Model checking, Monte Carlo, Multiplicity, Residual plot, Simulation, Simultaneous tolerance band, Tolerance region
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Bioinformatics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
Institute of Applied Mathematics and Statistics, University of Hohenheim, Stuttgart, Germany
ISSN:
0361-0918
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.25576917
Database:
PASCAL Archive

Weitere Informationen

Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in Statistics-Simulation and Computation® for the following three supplemental resource: a word file containing figures illustrating the mode of operation for the bisectional algorithm, QQ-plots, and a residual plot for the mussels data.].