Treffer: Intermittent Missing Observations in Discrete-Time Hidden Markov Models

Title:
Intermittent Missing Observations in Discrete-Time Hidden Markov Models
Source:
Communications in statistics. Simulation and computation. 41(1-2):167-181
Publisher Information:
Colchester: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 1/4 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Analyse multivariable, Multivariate analysis, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Analyse discriminante, Discriminant analysis, Análisis discriminante, Analyse multivariable, Multivariate analysis, Análisis multivariable, Donnée manquante, Missing data, Dato que falta, Erreur systématique, Bias, Error sistemático, Estimation biaisée, Biased estimation, Estimación sesgada, Information incomplète, Incomplete information, Información incompleta, Loi multinomiale, Multinomial distribution, Ley multinomial, Modèle Markov caché, Hidden Markov model, Modelo Markov oculto, Modèle Markov variable cachée, Hidden Markov models, Méthode statistique, Statistical method, Método estadístico, Santé mentale, Mental health, Salud mental, Santé publique, Public health, Salud pública, Science médicale, Medical science, Ciencia Medica, Simulation numérique, Numerical simulation, Simulación numérica, Simulation statistique, Statistical simulation, Simulación estadística, Temps discret, Discrete time, Tiempo discreto, 58A25, 62H30, Classification automatique(statistiques), Donnée longitudinale, Modèle discret, 62M05, Imperfect indicator, Latent variable, Longitudinal multinomial data
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, United States
Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas, United States
Division of Epidemiology and Disease Control, The University of Texas School of Public Health, Houston, Texas, United States
ISSN:
0361-0918
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.25576919
Database:
PASCAL Archive

Weitere Informationen

In medical and public health research, hidden Markov models (HMM) are applied in longitudinal studies to model the progression of disease based on clinical classifications that may not be accurate. While missing data are common in longitudinal studies, their impact on HMM has not been well studied. We conduct a simulation study to evaluate effects on the parameter estimates of HMM by simulating complete data, along with incomplete data with intermittent missing values generated by ignorable and non ignorable missing mechanisms. Three scenarios with different sets of parameters were simulated. For incomplete data due to an ignorable mechanism, the accuracy and precision of parameter estimates are generally similar to those obtained from complete data in all examined parameter sets. Under the non ignorable mechanism, the estimation bias is substantial for most parameters when the latent outcome is equally likely to stay at the current state or to move to other states. The bias is dramatically smaller when subjects are more likely to stay at the current state than moving to other states. An example from the mental health arena is used to illustrate the application of intermittent missing observations using HMM. Some computational issues are also discussed.