Result: On Linear-Sized Farthest-Color Voronoi Diagrams : Foundations of Computer Science - Mathematical Foundations and Applications of Computer Science and Algorithms
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Further Information
Given a collection of k sets consisting of a total of n points in the plane, the distance from any point in the plane to each of the sets is defined to be the minimum among distances to each point in the set. The farthest-color Voronoi diagram is defined as a generalized Voronoi diagram of the k sets with respect to the distance functions for each of the k sets. The combinatorial complexity of the diagram is known to be Θ(kn) in the worst case. This paper initiates a study on farthest-color Voronoi diagrams having O(n) complexity. We introduce a realistic model, which defines a certain class of the diagrams with desirable geometric properties observed. We finally show that the farthest-color Voronoi diagrams under the model have linear complexity.