Treffer: Dose adaptation of capecitabine based on individual prediction of limiting toxicity grade: evaluation by clinical trial simulation

Title:
Dose adaptation of capecitabine based on individual prediction of limiting toxicity grade: evaluation by clinical trial simulation
Source:
Cancer chemotherapy and pharmacology. 69(2):447-455
Publisher Information:
Heidelberg: Springer, 2012.
Publication Year:
2012
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Subject Terms:
Medical oncology, Cancérologie, Pharmacology drugs, Pharmacologie, galénique, Sciences biologiques et medicales, Biological and medical sciences, Sciences medicales, Medical sciences, Pharmacologie. Traitements medicamenteux, Pharmacology. Drug treatments, Anticancéreux, Antineoplastic agents, Dermatologie, Dermatology, Pathologie vasculaire cutanée, Vascular disorders of the skin, Acrosyndrome, Acrosíndrome, Cancer, Cáncer, Dérivé de la fluoropyrimidine, Fluoropyrimidine derivatives, Fluoropirimidina derivado, Pathologie de l'appareil circulatoire, Cardiovascular disease, Aparato circulatorio patología, Pathologie de la peau, Skin disease, Piel patología, Pathologie des capillaires sanguins, Capillary vessel disease, Capilar sanguíneo patología, Pathologie des vaisseaux sanguins, Vascular disease, Vaso sanguíneo patología, Pyrimidine nucléoside, Pyrimidine nucleoside, Pirimidina nucleósido, Traitement, Treatment, Tratamiento, Adaptation, Adaptación, Anticancéreux, Antineoplastic agent, Anticanceroso, Capécitabine, Capecitabine, Capecitabina, Chimiothérapie, Chemotherapy, Quimioterapia, Dose, Dosis, Erythromélalgie, Erythromelalgia, Eritromelalgia, Essai clinique, Clinical trial, Ensayo clínico, Evaluation, Evaluación, Facteur prédictif, Predictive factor, Factor predictivo, Homme, Human, Hombre, Individu, Individual, Individuo, Modélisation, Modeling, Modelización, Promédicament, Prodrug, Promedicamento, Prédiction, Prediction, Predicción, Simulation ordinateur, Computer simulation, Simulación computadora, Toxicité, Toxicity, Toxicidad, Tumeur maligne, Malignant tumor, Tumor maligno, Antipyrimidique, Cancer chemotherapeutics, Computer modeling and simulation, Dose adaptation, Hand-and-foot syndrome, Pharmacometrics
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Universite de Lyon, 69622 Lyon, France
Universite Lyon 1, Faculté de Medecine Lyon Sud, BP12, EMR3738 Ciblage Therapeutique en Oncologie, 69921 Oullins, France
Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Pharmacie, 69317 Lyon, France
Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Oncologie Médicale, 69310 Pierre-Bénite, France
ISSN:
0344-5704
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Dermatology

Pharmacological treatments
Accession Number:
edscal.25577395
Database:
PASCAL Archive

Weitere Informationen

Purpose Anticancer drugs often show a narrow therapeutic index and high inter-patient variability, which can lead to the need to adjust doses individually during the treatment. One approach to doing this is to use individual model predictions. Such methods have been proposed to target-specific drug concentrations or blood cell count, both of which are continuous variables. However, many toxic effects are evaluated on a categorical scale. This article presents a novel approach to dose adjustments for reducing a graded toxicity while maintaining efficacy, applied to hand-and-foot syndrome (HFS) induced by capecitabine. Methods A mixed-effects proportional odds Markov model relating capecitabine doses to HFS grades was individually adjusted at the end of each treatment cycle (3 weeks) by estimating subject-specific parameters by Bayesian MAP technique. It was then used to predict the risk of intolerable (grade ≥ 2) toxicity over the next treatment cycle and determine the next dose accordingly, targeting a predefined tolerable risk. Proof of concept was given by simulating virtual clinical trials, where the standard dose reductions and the prediction-based adaptations were compared, and where the therapeutic effect was simulated using a colorectal tumor inhibition model. A sensitivity analysis was carried out to test various specifications of prediction-based adaptation. Results Individualized dose adaptation might reduce the average duration of intolerable HFS by 10 days as compared to the standard reductions (3.8 weeks vs. 5.2 weeks; 27% relative reduction) without compromising antitumor efficacy (both responder rates were 49%). A clinical trial comparing the two methods should include 350 patients per arm to achieve at least 90% power to show a difference in grade ≥2 HFS duration at an alpha level of 0.05. Conclusions These results indicate that individual prediction-based dose adaptation based on ordinal data may be feasible and beneficial.