Treffer: Separable Codes
Department of Mathematics, Soochow University, Suzhou 215006, China
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Multimedia fingerprinting is an effective technique to trace the sources of pirate copies of copyrighted multimedia information. Separable codes can be used to construct fingerprints resistant to the averaging collusion attack on multimedia contents. In this paper, we investigate t̄-separable codes from a combinatorial point of view. We first derive several upper bounds on the sizes of t̄-separable codes, and then turn our attention to the constructions of optimal 2-separable codes with short length. Two infinite families of optimal 2-separable codes of length 2 are constructed from projective planes, and all optimal 2̄-separable codes of length 3 are explicitly constructed by means of difference matrices. These optimal 2-separable codes with short length can be used to construct good 2-separable codes with long length by a known composition construction.